STATISTICAL STRUCTURES ARISING IN NULL SUBMANIFOLDS

Abstract

We show a link between affine differential geometry and null submanifolds in a semi- Riemannian manifold via statistical structures. Once a rigging for a null submanifold is fixed, we can construct a semi-Riemannian metric on it. This metric and the induced connection constitute a statistical structure on the null submanifold in some cases. We study the statistical structures arising in this way. We also construct statistical structures on a null hypersurface in the LorentzMinkowski space using the null second fundamental form. This extends the classical construction to the null case.

REFERENCES

[1] C. Atindogb and B. Olea, Conformal vector fields and null hypersurfaces. Results Math. 77 no. 3 (2022), 129, 22 pp .
[2] C. Atindogb, M. Gutirrez, R. Hounnonkpe and B. Olea, Contact structures on null hypersurfaces. J. Geom. Phys. 178 (2022), 104576, 10 pp.
[3] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic, 364, Dordrecht, 1996.
[4] S. Amari, Differential geometrical methods in statistics. Lecture Notes in Statistics, 28. Springer-Verlag, New York, 1985.
[5] M. Gutiérrez and B. Olea, Semi-Riemannian manifolds with a doubly warped structure, Rev. Mat. Iberoam. 28 (2012), 1-24.
[6] M. Gutiérrez and B. Olea, Induced Riemannian structures on null hypersurfaces in Lorentzian manifolds, Math. Nachr. 289 (2016), 1219-1236.
[7] M. Gutiérrez and B. Olea, Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces, Diff. Geom. Appl. 42 (2015), 15-30.
[8] M. Gutirrez and B. Olea, The rigging technique for null hypersurfaces, Axioms 10 no. 4 (2021), 284, 35 pp.
[9] M. Gutirrez and B. Olea, Codimension two spacelike submanifolds through a null hypersurface in a Lorentzian manifold. Bull. Malays. Math. Sci. Soc. 44 no. 4 (2021), 22532270.
[10] M. Gutirrez and B. Olea, Characterization of null cones under a Ricci curvature condition. J. Math. Anal. Appl. 508 no. 2 (2022), 125906, 16 pp.
[11] M. Gutirrez and B. Olea, Conditions on a null hypersurface of a Lorentzian manifold to be a null cone. J. Geom. Phys. 145 (2019), 103469, 9 pp.
[12] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I. John Wiley and Sons, New York (1963).
[13] F. Ngakeu, H.T. Fosting, α-associated metrics in rigged null hypersurfaces, Turk. J. Math. 43 (2019), 1161-1181.
[14] B. Olea, A curvature inequality characterizing totally geodesic null hypersurfaces, Mediterr. J. Math., in press.
[15] B. Opozda, Bochners technique for statistical structures, Ann. Glob. Anal. Geom. 48 (2015), 357395.
[16] B. Opozda, Completeness in affine and statistical geometry, Ann. Glob. Anal. Geom. 59 (2021), 367383.

Key words and phrases. Null submanifolds, Statistical structures, Dual connections, Rigging technique, Blaschke metric.
[17] B. Opozda, Some inequalities and applications of Simons' type formulas in Riemannian, affine, and statistical geometry. J. Geom. Anal. 32 no. 4 (2022), 108, 29 pp.
[18] M. Noguchi, Geometry of statistical manifolds, Diff. Geom. Appl. 2 (1992), 197222.
[19] F. Ngakeu, H.F. Tetsing and B. Olea, Rigging technique for 1-lightlike submanifolds and preferred rigged connections, Mediterr. J. Math. 16 (2019), 139, 20 pp.
[20] M.A. Li, U. Simon and G. Zhao, Global affine differential geometry of hypersurfaces. Walter de Gruyter, Berlin (1993).
[21] R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 1525.
[22] M. Navarro, O. Palmas, D.A. Solis, Null hypersurfaces in generalized Robertson-Walker spacetimes, J. Geom. Phys. 106 (2016), 256-267.
[23] K. Nomizu and T. Sasaki, Affine Differential Geometry. Geometry of Affine Immersions Cambridge University Press, (1994).
[24] H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291-311.

