C^0 -transport of flux geometry # Stephane Tchuiaga^a, Franck Houenou ^{b,c,*}, Carole Madengko^c, Ancille Nguedakumana^d - ^a Department of Mathematics, University of Buea, South West Region, Cameroon - b Department of Mathematics, University of Abomey Calavi, Abomey Calavi, Benin - ^c Institut de Mathématiques et de Sciences Physiques, University of Abomey Calavi, Dangbo, Benin - d Ecole Normale Supérieure de Bujumbura, Burundi ### ARTICLE INFO # Article history: Received 30 November 2021 Received in revised form 7 October 2022 Accepted 7 October 2022 Available online 12 October 2022 ## MSC: 53C24 53D05 57S05 # *Keywords:* Rigidity results Symplectic manifolds general Topological properties of groups of homeomorphisms or diffeomorphisms #### ABSTRACT The goal of this paper is to study, in a large scale point of view, the flux geometry of a closed symplectic manifold (M,ω) : namely, the topological counterpart of the flux homomorphism. Using metrics arising from the decomposition of closed 1-forms with respect to an arbitrary linear section \mathcal{S} , we generalize the construction of the group of strong symplectic homeomorphisms. The flux homomorphism for symplectomorphisms is extended to a surjective group homomorphism S^0_ω on the group of \mathcal{S} -homeomorphisms. We prove that the kernel of S^0_ω is path connected, coincides with the subgroup $Hameo(M,\omega)$ of all Hamiltonian homeomorphisms and investigate the discreteness of the corresponding flux group $\mathcal{S}\Gamma_\omega$. Later on, without appealing to any lifting map, we give an alternative proof of a result from the classical flux geometry saying that any smooth symplectic isotopy in $Ham(M,\omega)$ is a Hamiltonian isotopy. Furthermore under some hypothesis, we prove that any \mathcal{S} -topological isotopy in $Hameo(M,\omega)$ is a continuous Hamiltonian isotopy. We also proved that any \mathcal{S} -topological isotopy with trivial flux is homotopic to a continuous Hamiltonian isotopy, relatively to fixed endpoints. © 2022 Elsevier B.V. All rights reserved.