Block hybrid methods for solving dynamical systems - Numerical Experimentation

S.S. Motsa

University of Eswatini

sandilemots a @gmail.com

Namibian International Spring School in Mathematics, University of Namibia, Windhoek, October 23-28, 2022

General form of the HBM

HBM

$$y_{n+p_i} = y_n + h \sum_{j=0}^m \beta_{i,j} f_{n+p_j}, \quad \beta_{i,j} = \int_0^{p_i} \ell_j(\tau) d\tau$$

 $i = 1, 2, \dots, m$

Matrix Form $A_1Y_{n+1} = A_0Y_n + h(B_0F_n + B_1F_{n+1})$

Sample HBM

$$\begin{array}{ll} \text{Matrix Form} & A_1Y_{n+1} = A_0Y_n + h(B_0F_n + B_1F_{n+1}) \\ \\ \text{Grid points A: } \left\{ 0, \frac{1}{3}, \frac{2}{3}, 1 \right\} \\ \\ B_0 = \begin{pmatrix} 0 & 0 & \frac{1}{8} \\ 0 & 0 & \frac{1}{9} \\ 0 & 0 & \frac{1}{8} \end{pmatrix}, Y_{n+1} = \begin{bmatrix} y_{n+\frac{1}{3}} \\ y_{n+\frac{2}{3}} \\ y_{n+1} \end{bmatrix} \\ \\ B_1 = \begin{pmatrix} \frac{19}{72} & -\frac{5}{72} & \frac{1}{72} \\ \frac{4}{9} & \frac{1}{9} & 0 \\ \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{pmatrix} \\ \end{array}$$

Numerical Experimentation

General autonomous systems

$$y' = f(t, y) = cy + d$$

$$F_{n+1} = \begin{bmatrix} f\left(t_{n+\frac{1}{3}}, y_{n+\frac{1}{3}}\right) \\ f\left(t_{n+\frac{2}{3}}, y_{n+\frac{2}{3}}\right) \\ f\left(t_{n+1}, y_{n+1}\right) \end{bmatrix} = \begin{bmatrix} cy_{n+\frac{1}{3}} + d \\ cy_{n+\frac{2}{3}} + d \\ cy_{n+1} + d \end{bmatrix} = c \begin{bmatrix} y_{n+\frac{1}{3}} \\ y_{n+\frac{2}{3}} \\ y_{n+1} \end{bmatrix} + \begin{bmatrix} d \\ d \\ d \\ d \end{bmatrix} = cY_{n+1} + \mathbf{d}$$

$$\begin{aligned} A_1 Y_{n+1} &= A_0 Y_n + h (B_0 F_n + B_1 F_{n+1}) \\ A_1 Y_{n+1} &= A_0 Y_n + h B_0 (c Y_n + \mathbf{d}) + h B_1 (c Y_{n+1} + \mathbf{d}) \\ Y_{n+1} &= P Y_n + Q \end{aligned}$$

where $P = (A_1 - chB_1)^{-1}(A_0 + chB_0), \quad Q = h(A_1 - chB_1)^{-1}(B_0 + B_1)\mathbf{d}$

Numerical Experimentation

General non-autonomous systems

$$y' = f(t, y) = c(t)y + d(t)$$

$$F_{n+1} = \begin{bmatrix} f\left(t_{n+\frac{1}{3}}, y_{n+\frac{1}{3}}\right) \\ f\left(t_{n+\frac{2}{3}}, y_{n+\frac{2}{3}}\right) \\ f\left(t_{n+1}, y_{n+1}\right) \end{bmatrix} = \begin{bmatrix} c\left(t_{n+\frac{1}{3}}\right) y_{n+\frac{1}{3}} + d\left(t_{n+\frac{1}{3}}\right) \\ c\left(t_{n+\frac{2}{3}}\right) y_{n+\frac{2}{3}} + d\left(t_{n+\frac{2}{3}}\right) \\ c\left(t_{n+1}\right) y_{n+1} + d\left(t_{n+1}\right) \end{bmatrix} \\ = \underbrace{\begin{bmatrix} c\left(t_{n+\frac{1}{3}}\right) & 0 & 0 \\ 0 & c\left(t_{n+\frac{2}{3}}\right) & 0 \\ 0 & 0 & c\left(t_{n+1}\right) \\ y_{n+1} \end{bmatrix}}_{c_{n+1}} \underbrace{\begin{bmatrix} y_{n+\frac{1}{3}} \\ y_{n+1} \\ y_{n+1} \end{bmatrix}}_{Y_{n+1}} + \underbrace{\begin{bmatrix} d\left(t_{n+\frac{1}{3}}\right) \\ d\left(t_{n+2}\right) \\ d\left(t_{n+1}\right) \\ d_{n+1} \end{bmatrix}}_{d_{n+1}}$$

 $A_1Y_{n+1} = A_0Y_n + h(B_0F_n + B_1F_{n+1})$ $Y_{n+1} = P_nY_n + Q_n$

where $P_n = (A_1 - hB_1c_{n+1})^{-1}(A_0 + hB_0c_n), \quad Q_n = h(A_1 - hB_1c_{n+1})^{-1}(B_0d_n + B_1d_{n+1})$

Numerical Experimentation

Autonomous system (time-invariant)

$$\frac{dy}{dt} = 2y + 4$$
, $y(0) = 1$, Exact: $y(t) = 3e^{2t} - 2$

c = 2 and d = 4 and $Y_{n+1} = PY_n + Q$

Points A:
$$\left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$$
, $P = \begin{pmatrix} 0 & 0 & \frac{9784}{9153} \\ 0 & 0 & \frac{20917}{18306} \\ 0 & 0 & \frac{7453}{6102} \end{pmatrix}$, $Q = \begin{pmatrix} \frac{1262}{9153} \\ \frac{2611}{9153} \\ \frac{1351}{3051} \end{pmatrix}$
Points B: $\left\{0, \frac{1}{6}, \frac{1}{6}, 1\right\}$, $P = \begin{pmatrix} 0 & 0 & \frac{620945}{600588} \\ 0 & 0 & \frac{160498}{150147} \end{pmatrix}$, $Q = \begin{pmatrix} \frac{20357}{300294} \\ \frac{20702}{150147} \end{pmatrix}$

$$\left(\begin{array}{c} 6 & 3 \\ 0 & 0 \\ 50049 \end{array}\right)^{-1} \left(\begin{array}{c} 150147 \\ 22162 \\ 22162 \\ 50049 \end{array}\right)^{-1} \left(\begin{array}{c} 150147 \\ 22162 \\ 22$$

Matrix structure

$$y_{n+p_i} = y_n + hp_i, \ t_{n+p_i} = t_n + hp_i, \ i = 1, \dots, m$$

$$I_0 \qquad I_1 \qquad I_2 \qquad I_{n-1} \qquad$$

S.S. Motsa NAISSMA2022

Results: Autonomous system example

Autonomous system (time-invariant)

$$\frac{dy}{dt} = 2y + 4$$
, $y(0) = 1$, Exact: $y(t) = 3e^{2t} - 2$

Results: Non-autonomous system example

Non-autonomous system

$$\frac{dy}{dt} = 2ty + 4t$$
, $y(0) = 1$, Exact: $y(t) = 3e^{t^2} - 2$

S.S. Motsa NAISSMA2022

Results: Stiff example

Non-autonomous system (stiff equation)

$$\frac{dy}{dt} = -50(y - \cos t), \quad y(0) = 0,$$

Exact: $y(t) = \frac{50(-50e^{-50t} + \sin(t) + 50\cos(t))}{2501}$

S.S. Motsa NAISSMA2022

Results: Stiff example

$$E_n = |y(t_{n+p_i}) - y_{n+p_i}|_{\infty}, \quad i = 1, 2, \dots, m$$

Example from Chaos Theory

Consider the Lorenz system given by

$$\begin{array}{ll} \dot{y_1} &= a(y_2 - y_1), & y_1(0) &= 1 \\ \dot{y_2} &= -y_1 y_3 + b y_1 - y_2, & y_2(0) &= 5 \\ \dot{y_3} &= y_1 y_2 - c y_3, & y_3(0) &= 10 \end{array}$$

The parameters of the iteration scheme are

$$\begin{aligned} c_1(t, y_1, y_2, y_3) &= -a, \quad d_1(t, y_1, y_2, y_3) = ay_2, \\ c_2(t, y_1, y_2, y_3) &= -1, \quad d_2(t, y_1, y_2, y_3) = by_1 - y_1y_3, \\ c_3(t, y_1, y_2, y_3) &= -c, \quad d_3(t, y_1, y_2, y_3) = y_1y_2 \end{aligned}$$

 c_1, c_2 and c_3 are coefficients of y_1, y_2 and y_2 , respectively

Sample Matlab code: Lorenz equation

$$\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
13 \\
14 \\
\end{array}$$

$$\begin{array}{l} a = 10; \ b = 28; \ c = 8/3; \\ c1 = @(t, y1, y2, y3)-a; \\ d1 = @(t, y1, y2, y3)a*y2; \\ c2 = @(t, y1, y2, y3)-1; \\ d2 = @(t, y1, y2, y3)b*y1 - y1*y3; \\ c3 = @(t, y1, y2, y3)-c; \\ d3 = @(t, y1, y2, y3)y1*y2 ; \\ Nt = 4000; \ t0 = 0; \ tT = 40; \\ h = (tT - t0)/Nt; \\ t = linspace(t0, tT, Nt+1); \\ \%initial conditions \\ y10 = 1; \ y20 = 5; \ y30 = 10; \\ \end{array}$$

Figure: Phase portraits of the Lorenz equation

