Presenting frames - Part 1

Martin M. Mugochi

University of Namibia

NAISSMA 2022

Abstract

This talk is a 3-part lecture series in which we present frames as distributive lattices satisfying the so-called infinite distibutive law. On one hand frames are viewed as Heyting algebras, on the other as generalized lattices of "opens". The latter view enables one to revisit many classical results of general topology - an exercise dubbed as "doing topology without points", "pointfree topology" or "pointless topology" - with the benefit, sometimes, of not having to rely heavily on choice principles.

Key words: complete lattice, frame, locale, sober space, spatial locale, sublocale.

We draw notions from topology, lattice theory and category theory.

Part 1
 Lattices

Partially ordered set

A partial order \leq on a set A is a binary relation satisfying, for all $a, b, c \in A$:

- $a \leq a$. (Reflexivity)

Partially ordered set

A partial order \leq on a set A is a binary relation satisfying, for all $a, b, c \in A$:

- $a \leq a$. (Reflexivity)
- If $a \leq b$ and $b \leq c$, then $a \leq c$. (Transitivity)

Partially ordered set

A partial order \leq on a set A is a binary relation satisfying, for all $a, b, c \in A$:

- $a \leq a$. (Reflexivity)
- If $a \leq b$ and $b \leq c$, then $a \leq c$. (Transitivity)
- If $a \leq b$ and $b \leq a$, then $a=b$. (Anti-symmetry)

Partially ordered set

A partial order \leq on a set A is a binary relation satisfying, for all $a, b, c \in A$:

- $a \leq a$. (Reflexivity)
- If $a \leq b$ and $b \leq c$, then $a \leq c$. (Transitivity)
- If $a \leq b$ and $b \leq a$, then $a=b$. (Anti-symmetry)
- The pair (A, \leq) called a partially ordered set (or simply, poset).

Poset examples

Poset examples

- The set $\mathbb{N}=\{0,1,2,3,4, \ldots\}$ of natural numbers. (In fact, has a stronger order)

Poset examples

- The set $\mathbb{N}=\{0,1,2,3,4, \ldots\}$ of natural numbers. (In fact, has a stronger order)
- The set \mathbb{Q} of rational numbers (fractions, including whole numbers +ve and -ve) is a poset.

Poset examples

- The set $\mathbb{N}=\{0,1,2,3,4, \ldots\}$ of natural numbers. (In fact, has a stronger order)
- The set \mathbb{Q} of rational numbers (fractions, including whole numbers +ve and -ve) is a poset.
- Given any set X, the power set $\mathcal{P}(X)$, with subset inclusion relation \subseteq, is a poset.

Bounds

Given a poset (A, \leq),

- An element $0 \in A$ is called the bottom element, if $0 \leq a$ for all $a \in A$.

Bounds

Given a poset (A, \leq),

- An element $0 \in A$ is called the bottom element, if $0 \leq a$ for all $a \in A$.
- Similarly, $1 \in A$ is called the top element, if $a \leq 1$ for all $a \in A$.

Bounds

Given a poset (A, \leq),

- An element $0 \in A$ is called the bottom element, if $0 \leq a$ for all $a \in A$.
- Similarly, $1 \in A$ is called the top element, if $a \leq 1$ for all $a \in A$.
- A given poset need not have the top nor bottom element: e.g. \mathbb{N} has bottom element 0 , but no top element; \mathbb{Q} has neither top nor bottom elements.

Bounds

Given a poset (A, \leq) and $S \subseteq A$

- An element $a \in A$ is called a lower bound of S, if $a \leq s$ for all $s \in S$. [If $a \in S$, then it is the minimum element of S].

Bounds

Given a poset (A, \leq) and $S \subseteq A$

- An element $a \in A$ is called a lower bound of S, if $a \leq s$ for all $s \in S$. [If $a \in S$, then it is the minimum element of S].
- An element $b \in A$ is called an upper bound of S, if $s \leq b$ for all $s \in S$.

Bounds

Given a poset (A, \leq) and $S \subseteq A$

- An element $a \in A$ is called a lower bound of S, if $a \leq s$ for all $s \in S$. [If $a \in S$, then it is the minimum element of S].
- An element $b \in A$ is called an upper bound of S, if $s \leq b$ for all $s \in S$.
- An element $\alpha \in A$ is called the infimum (greatest lower bound, or simply, inf) of S if α is a lower bound and whenever $a \in A$ is a lower bound of S, then $a \leq \alpha$.

Bounds

Given a poset (A, \leq) and $S \subseteq A$

- An element $a \in A$ is called a lower bound of S, if $a \leq s$ for all $s \in S$. [If $a \in S$, then it is the minimum element of S].
- An element $b \in A$ is called an upper bound of S, if $s \leq b$ for all $s \in S$.
- An element $\alpha \in A$ is called the infimum (greatest lower bound, or simply, inf) of S if α is a lower bound and whenever $a \in A$ is a lower bound of S, then $a \leq \alpha$.
- Similarly, $\beta \in A$ called the supremum (least upper bound, or simply, sup) of S if β is an upper bound and whenever $b \in A$ is an upper bound, then $\beta \leq b$.

Lattice

- In a poset (A, \leq), if any pair of elements $\{a, b\}$ has a sup and inf, then A is called a lattice.

Lattice

- In a poset (A, \leq), if any pair of elements $\{a, b\}$ has a sup and inf, then A is called a lattice.
- If a lattice A has a top 1 and bottom element 0 , then for the empty set $\emptyset \subseteq A$ we have $\sup (\emptyset)=0$ and $\inf (\emptyset)=1$.

Equational presentation

In a lattice A with bottom element 0 and top element 1 , write $a \wedge b=\inf \{a, b\}$ and $a \vee b=\sup \{a, b\}$. Then the following properties hold for all $a, b, c \in A$:

- $a \wedge b=a$ if and only if $a \vee b=b$.

Equational presentation

In a lattice A with bottom element 0 and top element 1 , write $a \wedge b=\inf \{a, b\}$ and $a \vee b=\sup \{a, b\}$. Then the following properties hold for all $a, b, c \in A$:

- $a \wedge b=a$ if and only if $a \vee b=b$.
- $a \wedge(b \wedge c)=(a \wedge b) \wedge c ; a \vee(b \vee c)=(a \vee b) \vee c$.

Equational presentation

In a lattice A with bottom element 0 and top element 1 , write $a \wedge b=\inf \{a, b\}$ and $a \vee b=\sup \{a, b\}$. Then the following properties hold for all $a, b, c \in A$:

- $a \wedge b=a$ if and only if $a \vee b=b$.
- $a \wedge(b \wedge c)=(a \wedge b) \wedge c ; a \vee(b \vee c)=(a \vee b) \vee c$.
- $a \wedge b=b \wedge a ; a \vee b=b \vee a$.

Equational presentation

In a lattice A with bottom element 0 and top element 1 , write $a \wedge b=\inf \{a, b\}$ and $a \vee b=\sup \{a, b\}$. Then the following properties hold for all $a, b, c \in A$:

- $a \wedge b=a$ if and only if $a \vee b=b$.
- $a \wedge(b \wedge c)=(a \wedge b) \wedge c ; a \vee(b \vee c)=(a \vee b) \vee c$.
- $a \wedge b=b \wedge a ; a \vee b=b \vee a$.
- $a \wedge a=a ; a \vee a=a$.

Equational presentation

In a lattice A with bottom element 0 and top element 1 , write $a \wedge b=\inf \{a, b\}$ and $a \vee b=\sup \{a, b\}$. Then the following properties hold for all $a, b, c \in A$:

- $a \wedge b=a$ if and only if $a \vee b=b$.
- $a \wedge(b \wedge c)=(a \wedge b) \wedge c ; a \vee(b \vee c)=(a \vee b) \vee c$.
- $a \wedge b=b \wedge a ; a \vee b=b \vee a$.
- $a \wedge a=a ; a \vee a=a$.
- $a \wedge 1=a ; a \vee 0=a$.

Lattice structure

One then realizes that a lattice A is in fact a five-tuple ($A, \wedge, \vee, 0,1$), where \wedge and \vee are binary operations satisfying the above equations.

Lattice structure

One then realizes that a lattice A is in fact a five-tuple ($A, \wedge, \vee, 0,1$), where \wedge and \vee are binary operations satisfying the above equations.

- We will frequently refer to \wedge as meet operation and \vee as join operation.

Examples

Distributivity

In all our discussions, by lattice A we shall mean the structure $(A, \wedge, \vee, 0,1)$.

Distributivity

In all our discussions, by lattice A we shall mean the structure $(A, \wedge, \vee, 0,1)$.

- A is a distributive lattice, if for all $a, b, c \in A$,

$$
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
$$

Distributivity

In all our discussions, by lattice A we shall mean the structure $(A, \wedge, \vee, 0,1)$.

- A is a distributive lattice, if for all $a, b, c \in A$,

$$
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)
$$

- In that case the following "dual" law is also satisfied:

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)
$$

Complementation

Proposition: In a distributive lattice A for any $a, b, c \in A$, there is at most one $x \in A$ such that

$$
x \wedge a=b \text { and } x \vee a=c
$$

Complementation

Proposition: In a distributive lattice A for any $a, b, c \in A$, there is at most one $x \in A$ such that

$$
x \wedge a=b \text { and } x \vee a=c
$$

- An element $a^{\prime} \in A$ is called a complement of $a \in A$ if

$$
a^{\prime} \wedge a=0 \text { and } a^{\prime} \vee a=1
$$

Complementation

Proposition: In a distributive lattice A for any $a, b, c \in A$, there is at most one $x \in A$ such that

$$
x \wedge a=b \text { and } x \vee a=c
$$

- An element $a^{\prime} \in A$ is called a complement of $a \in A$ if

$$
a^{\prime} \wedge a=0 \text { and } a^{\prime} \vee a=1
$$

- In case A is a distributive lattice, then, by the above proposition, a^{\prime} is unique, and we write $a^{\prime}=\neg a$.

Complementation

Proposition: In a distributive lattice A for any $a, b, c \in A$, there is at most one $x \in A$ such that

$$
x \wedge a=b \text { and } x \vee a=c
$$

- An element $a^{\prime} \in A$ is called a complement of $a \in A$ if

$$
a^{\prime} \wedge a=0 \text { and } a^{\prime} \vee a=1
$$

- In case A is a distributive lattice, then, by the above proposition, a^{\prime} is unique, and we write $a^{\prime}=\neg a$.
- A distributive lattice A in which $\neg a$ exists for each $a \in A$ is called a Boolean algebra.

Boolean algebra

The power set $\mathcal{P} X$ of any given set X is a typical example of a Boolean algebra.

Boolean algebra

The power set $\mathcal{P} X$ of any given set X is a typical example of a Boolean algebra.

- In a Boolean algebra A, the following de Morgan's laws hold:
(i) $\neg(a \wedge b)=\neg a \vee \neg b$
(ii) $\neg(a \vee b)=\neg a \wedge \neg b$.

Heyting algebra

A lattice A is called a Heyting algebra if for any $a, b \in A$, there is an element $(a \rightarrow b) \in A$ with the property that: for any $c \in A$,

$$
c \leq(a \rightarrow b) \text { if and only if } c \wedge a \leq b
$$

Heyting algebra

A lattice A is called a Heyting algebra if for any $a, b \in A$, there is an element $(a \rightarrow b) \in A$ with the property that: for any $c \in A$,

$$
c \leq(a \rightarrow b) \text { if and only if } c \wedge a \leq b
$$

- If A is a Boolean algebra, then $(a \rightarrow b)=\neg a \vee b$.

Heyting algebra

A Heyting algebra A is a distributive lattice.
A Heyting algebra A is a Boolean algebra if and only if for any $a \in A$, $\neg \neg a=a$.

Heyting algebra

A Heyting algebra A is a distributive lattice.
A Heyting algebra A is a Boolean algebra if and only if for any $a \in A, \neg \neg a=a$.

- The binary operation \rightarrow is also known as the Heyting implication.

Heyting algebra

In a Heyting algebra A the following properties hold:

- $(a \rightarrow a)=1$.

Heyting algebra

In a Heyting algebra A the following properties hold:

- $(a \rightarrow a)=1$.
- $a \wedge(a \rightarrow b)=a \wedge b$.

Heyting algebra

In a Heyting algebra A the following properties hold:

- $(a \rightarrow a)=1$.
- $a \wedge(a \rightarrow b)=a \wedge b$.
- $b \wedge(a \rightarrow b)=b$.

Heyting algebra

In a Heyting algebra A the following properties hold:

- $(a \rightarrow a)=1$.
- $a \wedge(a \rightarrow b)=a \wedge b$.
- $b \wedge(a \rightarrow b)=b$.
- $a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$.

Heyting algebra

In a Heyting algebra A the following properties hold:

- $(a \rightarrow a)=1$.
- $a \wedge(a \rightarrow b)=a \wedge b$.
- $b \wedge(a \rightarrow b)=b$.
- $a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$.
- $a \rightarrow(b \vee c) \geq(a \rightarrow b) \vee(a \rightarrow c)$.

Complete lattice

A lattice A is said to be complete if for any subset $S \subseteq A$ we have $\bigvee S=\sup (S)$ exists as a member of A.
This is equivalent to the property that for any
$S \subseteq A, \bigwedge S=\inf (S) \in A$.

Complete lattice

A lattice A is said to be complete if for any subset $S \subseteq A$ we have $\bigvee S=\sup (S)$ exists as a member of A.
This is equivalent to the property that for any
$S \subseteq A, \bigwedge S=\inf (S) \in A$.

- A complete lattice A is said to satisfy the infinite distributive law if forny $a \in A$ and any $S \subseteq A$,

$$
a \wedge(\bigvee S)=\bigvee\{a \wedge s \mid s \in S\}
$$

