

Random walk

$$
u_{i+1, j}=u_{i, j}+\tilde{p}_{j-1 \rightarrow j} u_{i, j-1}+\tilde{p}_{j+1 \rightarrow j} u_{i, j+1}
$$

Random walk

$$
u_{i+1, j}=u_{i, j}+\tilde{p}_{j-1 \rightarrow j} u_{i, j-1}+\tilde{p}_{j+1 \rightarrow j} u_{i, j+1}-\tilde{p}_{j \rightarrow j-1} u_{i, j}-\tilde{p}_{j \rightarrow j+1} u_{i, j}
$$

Random walk

$$
\begin{aligned}
u_{i+1, j} & =u_{i, j}+\tilde{p}_{j-1 \rightarrow j} u_{i, j-1}+\tilde{p}_{j+1 \rightarrow j} u_{i, j+1}-\tilde{p}_{j \rightarrow j-1} u_{i, j}-\tilde{p}_{j \rightarrow j+1} u_{i, j} \\
& =u_{i, j}+\Delta t\left[p_{j-1 \rightarrow j} u_{i, j-1}+p_{j+1 \rightarrow j} u_{i, j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{i, j}\right]
\end{aligned}
$$

Random walk

$$
\begin{aligned}
u_{i+1, j} & =u_{i, j}+\tilde{p}_{j-1 \rightarrow j} u_{i, j-1}+\tilde{p}_{j+1 \rightarrow j} u_{i, j+1}-\tilde{p}_{j \rightarrow j-1} u_{i, j}-\tilde{p}_{j \rightarrow j+1} u_{i, j} \\
& =u_{i, j}+\Delta t\left[p_{j-1 \rightarrow j} u_{i, j-1}+p_{j+1 \rightarrow j} u_{i, j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{i, j}\right]
\end{aligned}
$$

Per $\Delta t \rightarrow 0$

$$
\frac{d u_{j}}{d t}=p_{j-1 \rightarrow j} u_{j-1}+p_{j+1 \rightarrow j} u_{j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{j}
$$

Constant coefficients

$$
\frac{d u_{j}}{d t}=p_{j-1 \rightarrow j} u_{j-1}+p_{j+1 \rightarrow j} u_{j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{j}
$$

If $p_{j \rightarrow k}=\frac{D}{\Delta x^{2}} \longleftrightarrow \tilde{p}_{j \rightarrow k}=\frac{\Delta t}{\Delta x^{2}} D$

$$
\frac{d u_{j}}{d t}=\frac{\downarrow}{\Delta x^{2}}\left(u_{j-1}-2 u_{j}+u_{j+1}\right) \xrightarrow{\Delta x \rightarrow 0} \frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}
$$

$$
\begin{aligned}
u_{j+1} & \approx u_{j}+\frac{\partial u_{j}}{\partial x} \Delta x+\frac{\partial^{2} u_{j}}{\partial x^{2}} \frac{\Delta x^{2}}{2} \\
u_{j-1} & \approx u_{j}-\frac{\partial u_{j}}{\partial x} \Delta x+\frac{\partial^{2} u_{j}}{\partial x^{2}} \frac{\Delta x^{2}}{2}
\end{aligned}
$$

Looking here

$$
\begin{gathered}
\frac{d u_{j}}{d t}=p_{j-1 \rightarrow j} u_{j-1}+p_{j+1 \rightarrow j} u_{j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{j} \\
\text { If } p_{j \rightarrow k}=\frac{D_{j}}{\Delta x^{2}} \\
\frac{d u_{j}}{d t}=\frac{1}{\Delta x^{2}}\left(D_{j-1} u_{j-1}-2 D_{j} u_{j}+D_{j+1} u_{j+1}\right) \\
\frac{\Delta t}{\Delta x^{2}} D_{j} \\
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}[D(x) u] \\
\frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left[D^{\prime}(x) u\right]=\frac{\partial}{\partial x}\left[D(x) \frac{\partial u}{\partial x}\right]
\end{gathered}
$$

How can we get the diffusion equation?

$$
\frac{d u_{j}}{d t}=p_{j-1 \rightarrow j} u_{j-1}+p_{j+1 \rightarrow j} u_{j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{j}
$$

$$
? \frac{\partial u}{\partial t}=\nabla \cdot(D \nabla u) \text { ? }
$$

Looking in the middle

$$
\frac{d u_{j}}{d t}=p_{j-1 \rightarrow j} u_{j-1}+p_{j+1 \rightarrow j} u_{j+1}-\left(p_{j \rightarrow j-1}+p_{j \rightarrow j+1}\right) u_{j}
$$

$$
\text { If } p_{j \rightarrow j \pm 1}=\frac{D_{j \pm \frac{1}{2}}}{\Delta x^{2}} \longleftrightarrow \tilde{p}_{j \rightarrow j \pm 1}=\frac{\Delta t}{\Delta x^{2}} D_{j \pm \frac{1}{2}}
$$

$$
\frac{d u_{j}}{d t}=\frac{1}{\Delta x^{2}}\left[D_{j-\frac{1}{2}} u_{j-1}-\left(D_{j-\frac{1}{2}}+D_{j+\frac{1}{2}}\right) u_{j}+D_{j+\frac{1}{2}} u_{j+1}\right]
$$

$$
=\frac{1}{\Delta x^{2}}\left[D_{j-\frac{1}{2}}\left(u_{j-1}-u_{j}\right)-D_{j+\frac{1}{2}}\left(u_{j}-u_{j+1}\right)\right]
$$

$$
\approx \frac{1}{\Delta x}\left[D_{j+\frac{1}{2}} \frac{\partial u_{j+\frac{1}{2}}}{\partial x}-D_{j-\frac{1}{2}} \frac{\partial u_{j-\frac{1}{2}}}{\partial x}\right]
$$

$$
\approx \frac{\partial}{\partial x}\left(D_{j} \frac{\partial u_{j}}{\partial x}\right)
$$

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(D(x) \frac{\partial u}{\partial x}\right)
$$

Looking in the middle

$$
\text { If } \begin{aligned}
p_{j \rightarrow j \pm 1}=\frac{D_{j \pm \frac{1}{2}}}{\Delta x^{2}} & \begin{aligned}
\longrightarrow & \tilde{p}_{j \rightarrow j \pm 1}=\frac{\Delta t}{\Delta x^{2}} D_{j \pm \frac{1}{2}} \\
D_{j \pm \frac{1}{2}} & \approx D_{j} \pm \frac{\partial D_{j}}{\partial x} \frac{\Delta x}{2}
\end{aligned} .
\end{aligned}
$$

$$
\frac{d u_{j}}{d t} \approx \frac{1}{\Delta x^{2}}\left[\left(D_{j}-\frac{1}{2} \frac{\partial D_{j}}{\partial x} \Delta x\right)\left(u_{j}-\frac{\partial u_{j}}{\partial x} \Delta x+\frac{\partial^{2} u_{j}}{\partial x^{2}} \frac{\Delta x^{2}}{2}\right)-2 D_{j} u_{j}\right.
$$

$$
\left.+\left(D_{j}+\frac{1}{2} \frac{\partial D_{j}}{\partial x} \Delta x\right)\left(u_{j}+\frac{\partial u_{j}}{\partial x} \Delta x+\frac{\partial^{2} u_{j}}{\partial x^{2}} \frac{\Delta x^{2}}{2}\right)\right]
$$

$$
\approx \frac{\partial D_{j}}{\partial x} \frac{\partial u_{j}}{\partial x}+D_{j} \frac{\partial^{2} u_{j}}{\partial x^{2}}, \xrightarrow{\Delta x \rightarrow 0} \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(D(x) \frac{\partial u}{\partial x}\right)
$$

Looking ahead

$$
\begin{gathered}
\text { If } \begin{array}{c}
p_{j \rightarrow j \pm 1}=\frac{D_{j \pm 1}}{\Delta x^{2}} \\
\frac{d u_{j}}{d t}=\frac{1}{\Delta x^{2}}\left[D_{j} u_{j-1}-\left(D_{j-1}+D_{j+1}\right) u_{j}+D_{j} u_{j+1}\right] \\
D_{j \pm 1}=D_{j} \pm \frac{\Delta t}{\Delta x^{2}} D_{j \pm 1} \\
D_{j-1}+D_{j-1} \\
\approx 2 D_{j}+\frac{\partial^{2} D_{j}}{\partial x^{2}} \Delta x^{2} \\
u_{j-1}+u_{j-1} \\
\approx 2 u_{j}+\frac{\partial^{2} u_{j}}{\partial x^{2}} \Delta x^{2}
\end{array} .
\end{gathered}
$$

Looking ahead

$$
\begin{aligned}
& \frac{d u_{j}}{d t} \approx \frac{1}{\Delta x^{2}}\left[D_{j}\left(2 u_{j}+\frac{\partial^{2} u_{j}}{\partial x^{2}} \Delta x^{2}\right)-\left(2 D_{j}+\frac{\partial^{2} D_{j}}{\partial x^{2}} \Delta x^{2}\right) u_{j}\right] \\
&=D_{j} \frac{\partial^{2} u_{j}}{\partial x^{2}} \quad-\frac{\partial^{2} D_{j}}{\partial x^{2}} u_{j} \\
& \forall \Delta x \rightarrow 0
\end{aligned}
$$

$$
\frac{\partial u}{\partial t}(x, t)=D(x) \frac{\partial^{2} u}{\partial x^{2}}(x, t)-u(x, t) \frac{\partial^{2} D}{\partial x^{2}}(x)
$$

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left[D^{\prime}(x) u\right]=\frac{\partial}{\partial x}\left[D(x) \frac{\partial u}{\partial x}\right]
$$

Summary

Looking here

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}[D(x) u] \\
\frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left[D^{\prime}(x) u\right]=\frac{\partial}{\partial x}\left[D(x) \frac{\partial u}{\partial x}\right] \\
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(D(x) \frac{\partial u}{\partial x}\right) \\
\frac{\partial u}{\partial t}(x, t)=D(x) \frac{\partial^{2} u}{\partial x^{2}}(x, t)-u(x, t) \frac{\partial^{2} D}{\partial x^{2}}(x) \\
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}\left[D^{\prime}(x) u\right]=\frac{\partial}{\partial x}\left[D(x) \frac{\partial u}{\partial x}\right]
\end{gathered}
$$

Looking in the middle

Looking ahead

Diffusion equation

$$
M=\int_{\mathcal{V}} u d V
$$

$$
\frac{d M}{d t}=-\int_{\partial \mathcal{V}} \mathbf{j} \cdot \mathbf{n} d \Sigma+\int_{\mathcal{V}}(\Gamma-\Delta) d V
$$

because of influx/outflux
density of cells changes $\longrightarrow \frac{\partial u}{\partial t}+\nabla \cdot \mathbf{j}=\Gamma-\Delta$
because of birth/death

Fick's law $\mathbf{j}=-D \nabla u \longrightarrow \frac{\partial u}{\partial t}=\nabla \cdot(D \nabla u)$ If D is constant $\quad \frac{\partial u}{\partial t}=D \nabla^{2} u$

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)
$$

Diffusion equation

\# cells in the node at time $t=\#$ cells in the node at preceding time

+ \# cells coming from neighbours
- \# cells going to neighbours

ocw.mit.edu/ans7870/1/1.061/f04/animation/walk2.avi

Reaction-diffusion equation

\# cells in the node at time t
\# cells in the node at preceding time

Advection-reaction-diffusion equation

\# cells in the node at time $t=\#$ cells in the node at preceding time

+ \# cells coming from neighbours
- \# cells going to neighbours
$\frac{\text { Original at }}{\substack{0}}$
ocw.mit.edu/ans7870/1/1.061/f04/animation/ch6_cont.avi
+ \# generated (born) in the node
\# degradated (dead) in the node
because it is advected
\boldsymbol{u} changes in time

\# advected with velocity \mathbf{v}

Fundamental solutions

Diffusione in R^{n}
$\frac{\partial u}{\partial t}=D \nabla^{2} u$

$$
u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}|^{2}}{4 D t}\right]
$$

Diffusione con crescita
$\frac{\partial u}{\partial t}=D \nabla^{2} u+\gamma u$

$$
u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}|^{2}}{4 D t}+\gamma t\right]
$$

Convezione-diffusione
$\frac{\partial u}{\partial t}+\mathbf{v} \cdot \nabla u=D \nabla^{2} u$

$$
u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}-\mathbf{v} t|^{2}}{4 D t}\right]
$$

Drug efficacy

$\frac{\partial u}{\partial t}=D \nabla^{2} u$

$$
u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}|^{2}}{4 D t}\right]
$$

When $u>\bar{u}$ in x_{0} ?

Population expansion

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=D \nabla^{2} u \\
& u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}|^{2}}{4 D t}\right]
\end{aligned}
$$

$$
\begin{array}{r}
R(t) \\
\mathrm{M}_{\mathrm{out}}
\end{array}
$$

Population expansion with growth

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=D \nabla^{2} u+\gamma u \\
& u(x, t)=\frac{M}{(4 \pi D t)^{d / 2}} \exp \left[-\frac{|\mathbf{x}|^{2}}{4 D t}+\gamma t\right]
\end{aligned}
$$

Diffusion models

Breast tumour

rate of change of tumor cell population
$=$ diffusion (motility) of tumor cells + net proliferation of tumor cells

$$
\frac{\partial c}{\partial t}=\nabla \cdot(D \nabla c)+\rho c
$$

Original at:
www.maths.dundee.ac.uk/mbg/

Inverse problems

Fig. 2. Sections of a virtual human brain in sagittal, coronal and horizontal planes that intersect at the site of a glioma originating in the superior frontal region denoted by an asterisk $\left({ }^{*}\right)$. The left column of brain sections corresponds to the tumor at diagnosis (3 cm in average diameter) whereas the right column represents the same tumor at death $(6 \mathrm{~cm}$ in average diameter). Red denotes a high density of tumor cells while blue denotes a low density. A thick black contour defines the edge of the tumor detectable by enhanced MRI. Cell migration was allowed to occur in a truly threedimensional solid representation of the brain. The elapsed time between diagnosis and death for this virtual glioma is approximately 158 days, about one-fourth of the total history of the tumor. Reprinted from Swanson et al. [22], with the kind permission of Nature Publishing Group.

rate of change of tumor cell population
$=$ diffusion (motility) of tumor cells + net proliferation of tumor cells

$$
\frac{\partial c}{\partial t}=\nabla \cdot(D \nabla c)+\rho c
$$

K. Swanson

Figure 2 Sections of the virtual human brain in sagittal, coronal and horizontal planes that intersect at the site of the glioma originating in the thalamus denoted by an asterisk (*). The left column of brain sections corresponds to the tumour at diagnosis whereas the right column represents the same tumour at death. Red denotes a high density of tumour cells while blue denotes a low density. A thick black contour defines the edge of the tumour detectable by enhanced CT. Cell migration was allowed to occur in a truly three-dimensional solid representation of the brain. The elapsed time between diagnosis and death for this virtual gliomas is approximately 256 days.

Sagittal, coronal and axial virtual MRIs from a continuous motion picture of the recurrence of a "favorable" glioblastoma (unusually small, 1 cm in diameter, and unusually far forward in frontal polar cortex) following extensive resection of most of the frontal lobe. Thick black contours represent the edge of the gadoliniumenhanced T1-weighted MRI (T1Gd) signal. Red: high glioma cell density; Blue: low density.

Sagittal, coronal and axial virtual MRIs from a continuous motion picture of the recurrence of a "favorable" glioblastoma (unusually small, 1 cm in diameter, and unusually far forward in frontal polar cortex) following extensive resection of most of the frontal lobe. Thick black contours represent the edge of the gadoliniumenhanced T1-weighted MRI (T1Gd) signal. Red: high glioma cell density; Blue: low density.

Control \& optimization of chemotherapy

Giverso, Agosti, Ciarletta, Ambrosi, ZAMM (2018)

Control \& optimization of chemotherapy

Standard Stupp protocol:

2 Gy

Standard
therapy

Increased CHT dose

Increased RT sensitivity

